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A B S T R A C T

Using self-report personality data and 360-degree performance evaluations of 973 managers across various
contexts, we investigated the leader trait paradigm using a range of machine learning methods. We found that a
relatively simple linear ordinary least squares model incorporating direct effects of traits and context performed
equally as well as our best performing complex machine learning alternatives (e.g., lasso and random forests) at
predicting leader effectiveness under low-dimension conditions (i.e., a small number of predictors). We then
increased dimensionality and found that newer machine learning methods excelled. Overall, our computa-
tionally intensive approach supports the argument that (a) direct effects (not interactions) of traits and context
are important predictors of leader effectiveness and (b) appropriately matching combinations of methods,
models, and data (from simple and conventional to complex and novel) creates a powerful machine learning
engine for investigating leadership. We end with opportunities for future research, discuss practical implications,
and provide a list of resources for those interested in learning more about this analytical future.

Uncovering which characteristics make some individuals more sui-
table as leaders than others is a perennial quest (Day & Antonakis,
2012; Tuncdogan, Acar, & Stam, 2017). One of the most longstanding
pursuits within this vast body of work is predicting leadership effec-
tiveness based on consistent traits such as personality factors (Judge,
Piccolo, & Kosalka, 2009). Although researchers continue to find sup-
port for the relationship between personality traits and leadership (De
Vries, 2012), some scholars question the relevance of the leader trait
paradigm (Morgeson et al., 2007). Responding to this criticism, re-
searchers advocate for a more complex perspective, where the context
activates the effects of traits (Phaneuf, Boudrias, Rousseau, & Brunelle,
2016; Tett & Burnett, 2003), and the focus shifts away from direct main
effects of separate traits towards nonlinear and interaction effects
(Jensen & Patel, 2011). Answering this call for complexity, as we will
demonstrate, brings clarity to the trait perspective, and broadly sets the
stage for a new era of analytics in leadership research.

Scholars first provided support for advancements in leader trait
research by demonstrating that pairs of traits, such as conscientiousness
and emotional stability, interact on leadership outcomes (King, George,
& Hebl, 2005). Leaders, however, display a broad range of traits – far
beyond pairs (Judge et al., 2009) – and operate in diverse situations
(Tett & Burnett, 2003). Thus, studies focusing on only two-way

interactions and overlooking context are perhaps missing the actual
complexity of traits. Fortunately, we are on the cusp of a methodolo-
gical revolution commonly referred to as machine learning (ML) – i.e.,
an automated computational process for “learning” patterns in data
from repeated experience to improve performance on tasks such as
prediction (Kuhn & Johnson, 2013).

ML is a powerful engine for discovery and consequently an im-
portant way forward in the social sciences (e.g., Joel, Eastwick, &
Finkel, 2017; Yarkoni & Westfall, 2017). Algorithmic ML methods such
as random forests are ideally suited for situations that call for identi-
fying optimal sets of potential covariates, examining the effects of
multiple interactions simultaneously, and incorporating nonlinear re-
lationships (Breiman, 2001; Efron, Hastie, Johnstone, & Tibshirani,
2004; Strobl, Malley, & Tutz, 2009). ML also benefits the external va-
lidity of findings by introducing cross-validation (of a magnitude
greater than simple train/test resampling procedures), and has the
added advantage of “naïve” data exploration without needing to specify
a (complex) model beforehand. Likewise, ML can introduce “regular-
ization” over many iterations for “shrinking” prediction error to dras-
tically improve out-of-sample predictions. Thus, ML allows us to test
and scrutinize competing leadership theories at a level never before
possible (e.g., pitting the predictive performance of traditional leader
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trait assumptions against the interactionist perspective). In other words,
we can put the leader trait paradigm “through the (predictive) wringer”
using ML.

However, though using a broader variety of ML potentially answers
the call for advancement within the leader trait paradigm (Jensen &
Patel, 2011; Judge et al., 2009; Tuncdogan et al., 2017), we argue that
prudence is necessary. Many of the newer ML methods are designed for
larger data volumes (i.e., larger sample sizes) and higher dimension-
ality (i.e., a larger number of features such as predictor variables) in a
dataset than is the norm in leadership research. Moreover, while ML
advancements can help with prediction, the outcomes are often less
clear-cut to interpret than conventional approaches (Shmueli, 2010).
This raises the question to what extent using a variety of ML can clarify
the relationship between traits and leader effectiveness (or any other
leadership relationships). Does the leader trait paradigm indeed require
additional complexity to take its place in the pantheon of leadership
literature, or is the longstanding methodological tradition of direct ef-
fects and simple two-way interactions sufficient for explaining effec-
tiveness? To answer this question, we align with recent work stressing
the combined value of “classical and new methods” in the reexamina-
tion of seemingly “elegant explanatory stor[ies]” (Yarkoni & Westfall,
2017, p. 1118).

Accordingly, with this short communication, we initiate the next
generation response to the call for a focus on nonlinear effects and
combinations of trait-context interactions (Jensen & Patel, 2011; Judge
et al., 2009; Tuncdogan et al., 2017) by investigating the (potential)
added value of ML beyond the commonly used ordinary least squares
(OLS) regression approach. We accomplish this in the current study by
analyzing multiple personality and contextual predictors of leader ef-
fectiveness across a range of analytical methods – from established and
relatively simple to new and increasingly complex. The outcome of this
investigation will provide answers to fiercely persistent questions re-
garding the leader trait paradigm, and more broadly help to clarify the
(mis)application of ML. In particular, we address the following ques-
tions:

(a) To what extent can personality predict leader effectiveness, (b)
to what extent can personality-trait interactions add predictive va-
lidity, (c) to what extent are these personality-effectiveness re-
lationships context-dependent, and (d) how do novel versus con-
ventional analytical methods compare in terms of predictive
performance?

Thus, the primary goals are exploring how well leader traits predict
effectiveness, testing to what degree incorporating context helps in this
exploration, and examining what (if anything) newer ML methods add.
In short, we examine the extent to which predictive modeling supports
or challenges existing explanatory accounts of the leader trait paradigm
as we advance our analysis from simple to complex methods and
models.

Finally, we do not make specific hypotheses. We, instead, utilize
data-driven predictive modeling (as opposed to hypothesis-driven ex-
planatory modeling), and explore predictive validity across methods as
a straightforward way of comparing a simple versus an interactionist
perspective of the leader trait paradigm (for a review of prediction
versus explanation see Shmueli, 2010 and Yarkoni & Westfall, 2017).

Method

Participants

The respondents for our analysis were 973 leaders (after excluding
143 respondents from the original sample due to missing data). The
leaders included 60.2% men and 24.3% women (15.5% declined to
answer) with a mean age of 41.11 (SD=7.96; 20.5% declined to an-
swer). Most of these leaders (57.1%) worked in operational roles (i.e.,
line management) and the remaining 42.9% had a more strategic job

position (i.e., top executives, board members, GMs, VPs, and divisional
leaders). They also came from various employers with the majority
employed in private sector organizations (67.7%) and the remainder in
public/non-profit organizations (32.3%). As for company size, 41.2% of
the respondents worked in organizations with a 1000+ employees,
40.3% with 200–999 employees, and 18.5% with 0–199 employees.

Measures and procedure

Trait measures
We obtained secondary data from a dataset of leaders who com-

pleted the Hogan Personality Inventory (HPI) – a seven-factor assess-
ment corresponding to the five-factor model (FFM) of personality (see
Table 1; Hogan & Holland, 2003). This dataset included the following
traits: adjustment (α=0.76; 8 items; example item: I keep calm in a
crisis), ambition (α=0.63; 6 items; example item: I am a very ambi-
tious person), sociability (α=0.63; 5 items; example item: I am often
the life of the party), interpersonal sensitivity (α=0.63; 5 items; ex-
ample item: I try to see the other person's point of view), prudence
(α=0.56; 7 items; example item: I strive for perfection in everything I
do), inquisitive (α=0.60; 6 items; example item: I like trying new,
exotic types of food), and learning approach (α=0.48; 4 items; ex-
ample item: As a child, school was easy for me). These traits were
measured on a scale ranging from very much disagree (=1) to very
much agree (=5), and we included all these traits in our analysis.
Though the alphas for several of the factors are low, existing meta-
analysis finds average internal consistency reliability of the factors
ranging from 0.71 (prudence) to 0.89 (adjustment; Hogan & Holland,
2003). Accordingly, we decided not to delete items (and obtain higher
scores) to keep our findings more comparable to the large number of
studies employing the HPI. Furthermore, the flexibility of our ML
methods allowed us to simply add models incorporating all 41 HPI
items (in addition to the HPI factor models).

Context and demographic measures
The dataset included several other relevant variables. We in-

corporated the following in our analysis to serve as an additional layer
of complexity in the leader trait paradigm: sector (private vs. public
sectors), leaders' job level (operational vs. strategic), organization size
(small vs. medium vs. large), and gender (female vs. male vs. un-
known). We included these variables because they are listed as relevant
in the interactionist literature (i.e., the moderating effects of task, so-
cial, and organizational variables; Tett & Burnett, 2003).

Across sectors, different traits are needed as the focus shifts from
shareholder to stakeholder orientations (Donaldson & Preston, 1995;
Van der Wal, De Graaf, & Lasthuizen, 2008). Likewise, job-level is im-
portant because those rising to strategic levels of leadership experience
distinct task demands (Gilboa, Shirom, Fried, & Cooper, 2008), and
perhaps rely on different characteristics for effectiveness relative to
those at the operational level of an organization (e.g., Resick, Whitman,
Weingarden, & Hiller, 2009). Organization size is also important be-
cause the requirements for leading large organizations may differ sig-
nificantly from small enterprises (Vaccaro, Jansen, Van Den Bosch, &
Volberda, 2012). Finally, of the demographic variables, missing data for
gender was minimal, and we included it as a relevant variable given

Table 1
Relationship between the Five-Factor Model (FFM) and the Hogan Personality
Inventory (HPI).

FFM dimensions HPI dimensions

Neuroticism Adjustment
Extraversion Ambition and Sociability
Agreeableness Interpersonal Sensitivity
Conscientiousness Prudence
Openness Inquisitive and Learning Approach
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that people often demand different behavior from men than from
women (Eagly & Karau, 2002).

Effectiveness measures
The dataset included a 360-degree measure of leader effectiveness

where four rater types (supervisors, peers, direct reports, and self)
evaluated the target leader's performance on four dimensions (i.e., self-
management, relationship management, working in the business, and
working on the business) that were further divided into fourteen
“themes.” Respectively, theme items in these dimensions included in-
tegrity, communication, efficiency, and strategic planning. Leaders
scoring high on self-management and relationship management exhibit
above average intra- and interpersonal effectiveness (i.e., emotional
and social skills), and leaders scoring high on working in the business
and working on the business exhibit above average cognitive effec-
tiveness for accomplishing and coordinating work-related tasks (i.e.,
operational and strategic competencies). Collectively, the measure
captures a 360-perspective of (a) the types of leadership skills the leader
possesses and (b) how effective they are (perceived) at applying those
skills to the (leadership) context. These traits were measured on a scale
ranging from least favorable (=1) to most favorable (=8), and we
included all these traits in our analysis. We averaged the performance
measures to generate the overall 360-degree score (α=0.87). For
further details of the tool and research demonstrating its reliability and
validity see Peter Berry Consultancy (2016). Likewise, a technical
manual is available upon request from the consultancy for additional
information such as evidence pertaining to construct and criterion va-
lidity (Peter Berry Consultancy & Hogan Assessment Systems, 2019).

We generated an overall 360-degree score to address the call for
measurement “triangulation” of effectiveness relative to single mea-
sures (Richard, Devinney, Yip, & Johnson, 2009). Arguably, one reason
for the single-dimension approach in applied research is simply the
practical challenges with gathering a sufficient amount of multi-di-
mensional data. Though our dataset is not perfect (as we discuss
below), one of its major strengths is the quantity of multi-dimensional
performance data. We feel this represents a unique advantage given the
observed value of 360-degree performance rating systems. As Oh and
Berry (2009, p. 1510) state:

Personality has been studied as one of the predictors [of managerial
performance] and at the same time has often encountered skepti-
cism for its low validity. Our results demonstrate that estimates of
the validity of personality for predicting managerial performance
are greater when managerial performance is assessed from multiple
perspectives by utilizing the 360-degree performance rating system.

Simultaneously considering performance at multiple levels (i.e., 360-
degree triangulation) provides a powerful lens for investigating the
holistic relationship between traits and leader effectiveness in complex,
multilevel organizations. Otherwise, the potential for selection bias
exists where, for instance, a leader is effective when dealing with su-
periors at a strategic level but is generally ineffective with employees at
an operational level.

The leaders completed the HPI and 360-degree evaluation as part of
their employer's standard training and development practices, they
provided informed consent, and were debriefed. All procedures in the
current study received ethics approval. The archival data we analyzed is
not under our direct control. Requests to access the data should be
directed to Hogan Assessments. See Table 2 for means, standard de-
viations, and correlations among the study variables.

Analytical procedure
The purpose of our analysis was to explore the leader trait paradigm

and the added value of newer and more complex ML (i.e., regularized
regression and algorithmic methods) versus the commonly utilized OLS
regression method. Conventional methods deliver interpretability, but
lack the predictive potential of newer ML. Conversely, modern ML

methods provide predictive power because they are free to explore
complex interactions and nonlinear effects, but we cannot easily in-
terpret the modeled relationships between variables (see Breiman,
2001). Then there are regularized regression methods (e.g., ridge re-
gression) which optimize predictive generalizations yet provide some-
what interpretable results. Hence, we are exploring the benefits of
complexity and flexibility versus interpretability and transparency
along a continuum ranging from OLS regression and regularized re-
gression to advanced algorithmic methods.

Analytical methods. In predicting leadership performance, we built and
compared 32 different models using different combinations of methods
and predictors. We selected five of the most commonly utilized methods
(Kuhn & Johnson, 2013): OLS, ridge regression (RIDGE), least absolute
shrinkage and selection operator (LASSO), gradient boosting machine
(GBM), and random forests (RF).

OLS is probably the most frequently employed method in psy-
chology research, hence we denote it as the conventional method. OLS
estimates the parameters of a linear function of a set of predictor
variables by the least squares principle (i.e., it seeks to minimize the
sum of the squares of the differences between the observed outcome
variable and the values predicted by the linear function, in other words,
the sum of the squared errors). This method, however, struggles with
multicollinearity and can easily overfit the training data at hand. Thus,
OLS provides simplicity and clarity, but cannot fully appreciate un-
derlying patterns in complex data.

To better manage the tradeoff between overfitting and underfitting,
RIDGE and LASSO regression are frequently utilized. These methods are
quite similar to OLS regression where they seek to minimize the sum of
squared errors, but differ by also incorporating an additional penalty
term to counteract overfit. For RIDGE regression, this penalty term,
called the L2 penalty, consists of the sum of the squared values of the
coefficients multiplied by a parameter λ. If this λ value is set to zero,
the RIDGE model behaves the same as an OLS model (i.e., it minimizes
the sum of squared errors). However, the higher the λ, the more a
RIDGE model is inclined to decrease the largest of its coefficients in
light of their predictive value. This simply means it will shrink the
impact of overfitting in case of multicollinearity, and any irrelevant
features on the trained model will have their coefficients minimalized
(but not set to zero).

LASSO regression differs in that it employs the so-called L1 penalty
term which consists of the sum of the absolute values of the coefficients
multiplied by λ. Hence, for high values of λ, a LASSO model is inclined
to decrease its coefficients to exactly zero (i.e., it removes irrelevant
features from the model entirely rather than just minimizing their im-
pact). Adding either one of these penalty terms for coefficient size de-
creases the variance of the model's predictions by introducing some bias
in the model. This method of adding bias to reduce variance is called
regularization, and hence we denote RIDGE and LASSO as regularized
regression methods.

Finally, GBM and RF are tree-based ensemble models. Tree-based
models do not model linear relationships like OLS and its variants.
Rather, they iteratively split a data sample into subsamples based on
optimal demarcations (i.e., cut-points that progressively minimize error
in prediction). At every split, the model picks the optimal demarcations
on one of the predictor variables (e.g., a personality factor) that splits
the sample in a way that minimizes the sum of squared prediction errors
(in case of regression) on the outcome variable in the subsamples
(Breiman, Friedman, Stone, & Olshen, 1984). Simply put, both GBM
and RF partition off outcome variable data based on the available
predictor variables to create a predictive framework of reality. This
results in a tree-like structure that models the underlying relationships
in a dataset. One can then use this structure to make predictions for new
data as it filters through the branches.

The ensemble part refers to the fact that GBM and RF models are
comprised of many underlying “weak” models (e.g., high bias, low
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variance models), whose predictions are aggregated to one single pre-
diction. These underlying models are considered weak as they usually
do not predict the data well individually, even though, collectively,
their aggregated predictions are often quite accurate. Both GBM and RF
also include many optimization and regularization parameters as well
as complex meta-algorithms that help to avoid overfit. For instance,
GBM and RF make use of bootstrap aggregation, or bagging, where each
of the underlying weak models is trained on a different bootstrapped
sample of the data (Breiman, 1996). Moreover, boosting lies at the core
of the GBM algorithm, where each subsequent weak model is trained to
learn from the errors of its predecessor (Freund, Schapire, & Abe,
1999). Because of their more iterative nature and computational com-
plexities, we denote GBM and RF as algorithmic methods.

Regarding the value of using these various ML methods, Yarkoni
and Westfall (2017) state:

…the relative performance of different kinds of machine learning
algorithms can potentially provide important insights into the
nature of the data. For instance, if lasso regression outperforms ridge
regression …, then one might conjecture that the underlying causal
graph is relatively sparse [recalling that lasso removes irrelevant
features]. If…random forests outperform standard regression
models, then there may be relatively large low-order (e.g., two-way)
interactions or other nonlinearities that the machine learning
methods implicitly capture (p. 1116-1117).

Also, while the above is only a brief description of the complex inner
workings of these five methods, more detailed outlines have been
published (see Hoerl & Kennard, 1970 for RIDGE; Tibshirani, 1996 for
LASSO; Friedman, 2001 for GBM; Breiman, 2001 for RF). Further, for
broad overviews see Friedman, Hastie, and Tibshirani (2001) as well as
James, Witten, Hastie, and Tibshirani (2013).

Leadership effectiveness predictors. Using HPI factors and context as
predictors of leadership effectiveness, we investigated traits (e.g.,
OLS_t), traits and context variables (e.g., OLS_tc), traits and context
variables and interactions between traits (e.g., OLS_t*t), and traits and
context variables and interaction between traits and context variables
(e.g., OLS_t*c). Further, RF and GBM methods may automatically
include interactions between all the available predictors, thus only
two different models were built for each of these methods: one with
only trait data (e.g., RF_t) and one with trait and context variables (e.g.,
RF_t**c). We then repeated these same combinations for the HPI items
(in addition to the HPI factor models).

Finally, it is important to note that the most complex OLS, LASSO,

and RIDGE models included two-way interactions whereas GBM and RF
are free to consider any n-way combinations of the predictors such as
three-way interactions (e.g., trait by trait by context). As we will de-
monstrate, this freedom to explore complexity endows the algorithmic
models with an advantage under the right circumstances.

Layers of analysis. Our analysis was conducted broadly across two
layers: (a) the trait layer and (b) the trait and context layer. The trait
layer is a predictive layer in which we investigated HPI factor direct
effects on leader effectiveness. In the trait and context layer, we
explored to what degree the predictive performance of OLS,
regularized regression, and algorithmic methods change when
complexity is added to the leader trait paradigm. Specifically, we
started to increase dimensionality by incorporating interactions and
organizational context into the HPI factor models (e.g., HPI factor and
context interactions). We then generated a number of (tentative)
explanatory insights gleaned from our predictive analysis of HPI
factors and context. Finally, as mentioned above, we analyzed HPI
survey items (in addition to factors) given that a significant advantage
of our regularized and algorithmic methods as a means of prediction is
the ability to utilize highly dimensional datasets. As predictors, we
analyzed the 41 HPI items, the 6 context items, and their many
interactions in this highly dimensional space.

Collectively, our analysis provided us with data ranging from lower
dimensionality (i.e., HPI factor direct effects consisting of 7 predictors)
to higher dimensionality (i.e., HPI item direct and interaction effects
consisting of 1681 predictors). Hence, we investigated the tradeoff
between interpretability and predictive performance by comparing
multiple methods, models, and varying degrees of dimensionality.

Model construction and deployment. Following procedures outlined by
Kuhn and Johnson (2013), we built the models based on normalized
variables and complete cases. To predict performance, we used our five
chosen methods (i.e., OLS, LASSO, RIDGE, GBM, and RF) in
combination with each set of predictors for both HPI factors and HPI
items (i.e., HPI, HPI and context, interactions between HPI, and
interactions between HPI and context). Then, we had to determine
the optimal parameters values for four of the methods, and separately
for each model using these four methods. The two regularized methods
required a λ-value to be set, and both GBM and RF have a range of
different parameters to tune, including the minimal node size, the
number of trees, or their maximum depth. Basically, different
parameter settings can result in different models, and one wants to
use values that result in the most predictive model. Hence, prior to our

Table 2
Means, standard deviations, and correlations among the study variables.

Variables M SD 1 2 3 4 5 6 7 8 9 10 11 12

1. Hogan360 5.47 0.40
2. Adjustment 3.46 0.74 .175⁎⁎⁎

3. Ambition 4.15 0.63 .196⁎⁎⁎ .442⁎⁎⁎
4. Sociability 2.75 0.90 .083⁎ .087⁎⁎ .390⁎⁎⁎

5. Interpersonal sensitivity 3.69 0.58 .222⁎⁎⁎ .475⁎⁎⁎ .374⁎⁎⁎ .349⁎⁎⁎

6. Prudence 2.88 0.59 .152⁎⁎⁎ .364⁎⁎⁎ .090⁎⁎ −.259⁎⁎⁎ .294⁎⁎⁎

7. Inquisitive 2.50 0.71 0.003 .151⁎⁎⁎ .213⁎⁎⁎ .356⁎⁎⁎ .187⁎⁎⁎ −.091⁎⁎

8. Learning approach 2.27 0.71 .105⁎⁎ .210⁎⁎⁎ .245⁎⁎⁎ .155⁎⁎⁎ .152⁎⁎⁎ .029 .301⁎⁎⁎

9. Sectora 0.68 0.47 −0.049 −0.055 −0.016 −0.059 −.099⁎⁎ 0.020 −0.043 0.003
10. Job levelb 0.43 0.50 0.007 0.045 .169⁎⁎⁎ 0.035 −0.041 −0.041 −0.019 .067⁎ 0.056
11. Company sizec 2.23 0.74 .147⁎⁎⁎ 0.004 0.011 0.034 .064⁎ 0.019 0.045 .074⁎ −.065⁎ −.165⁎⁎⁎

12. Gender Maled 0.60 0.49 −.143⁎⁎⁎ 0.024 0.027 0.046 −.100⁎⁎ −0.033 .091⁎⁎ −.073⁎ .090⁎⁎ .114⁎⁎⁎ −.077⁎

13. Gender Femaled 0.24 0.43 .156⁎⁎⁎ −.068⁎ −0.051 −0.029 .142⁎⁎⁎ 0.028 −.141⁎⁎⁎ .076⁎ −.107⁎⁎⁎ −.088⁎⁎ .076⁎ −.696⁎⁎⁎

Note. a) Referent sector= non-profit, b) referent job-level= operational, c) company size: 1≤ 200, 2= 200–999, 3≥ 999, and d) referent gender= other gender or
unknown.

⁎ p < .05.
⁎⁎ p < .01.
⁎⁎⁎ p < .001.
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main analysis, we ran a so-called parameter tuning routine where we
explored wide parameter grids for each of our models and, using cross-
validation, we retrieved the best parameter settings among them. The
parameter values input in these initial grids were determined based on
common sense, experience, literature, and expert recommendations
(e.g., Ridgeway, 2017 for GBM). The parameter settings we explored
and chose for the models are included as online supplementary
material.

Further, to get a robust sense of true model parameters, we used a
Monte Carlo cross-validation routine, simulating many different situa-
tions by subsampling 1000 times from our dataset for each method and
each set of predictors. In total, we generated 32,000 different models
(i.e., [3 linear methods * 4 models]+ [2 algorithmic methods * 2
models] * 1000 samples each * 2 for HPI factor data and HPI item data),
training these on random 75% of the data, and assessing the out-of-
sample predictive validity (i.e., model performance) using the re-
maining 25% test sample.

Whereas aggregating the external performance based on 50–200 of
such datasets helps “to get a stable estimate of model performance”
(Kuhn & Johnson, 2013; p. 72), the 1000 datasets we generated for each
model added to our certainty in the performance estimates by pushing
our cross-validated situations to an extreme. In fact, our approach was
so computationally intensive that it could not be done on a personal
computer, and we had to run the models in the cloud. Lastly, we
compared model performance based on 95% confidence intervals, and
conducted the analyses using caret (Kuhn, 2017) in R; with elasticnet
(Zhou, 2013) for the LASSO and RIDGE models, gbm (Ridgeway, 2017)
for the GBM models, and ranger (Wright, Wager, & Probst, 2018) for the
RF models. The code for our procedure is available as supplementary
material.

In comparing the performance of the different models, we calcu-
lated the root mean squared error (RMSE) and the coefficient of de-
termination (R2) resulting from the models' predictions in the test
samples (i.e. out-of-sample performance). The RMSE indicates how far
(on average) the model residuals are from zero. This distance is larger
when the model predictions are further from the actual values. A
smaller RMSE thus suggest a more accurate model. The out-of-sample
R2 indicates to what extent the models explain the variance in the
outcome variable (and generalize from the training to the test samples).
The out-of-sample R2 is larger when the (root-squared) correlation be-
tween the model predictions and the actual values is stronger. Higher
out-of-sample R2 values thus suggest that the models explain more
variance in the outcome variable in the test samples.

Finally, before reporting the main results, it is important to note that
our cross-validation procedure has implications for the interpretation of
the R2 and RMSE values we find. Specifically, if our leadership effec-
tiveness scores were randomly distributed (i.e., were completely up to
chance), one would expect to find R2 values close to zero and RMSE
values close to the standard deviation of leadership effectiveness. In the
online supplementary materials, we illustrate such an outcome and
generate a baseline against which we can compare the predictive va-
lidity of our models. To create this baseline, we built similar models

(using the same above procedures) focused at predicting a normally
distributed random variable with the same mean (M=5.47) and
standard deviation (SD=0.40) as our actual target variable. As ex-
pected, the baseline models highest R2 was close to zero (R2=0.007)
and the lowest RMSE was similar to our standard deviation
(RMSE=0.411). This “chance” output, as we demonstrate below, is
dissimilar to our main results, thus providing additional support to the
validity of our findings.

Results

Trait layer

At the trait layer of analysis, we started by exploring only direct trait
effects on 360-degree ratings of leader effectiveness (i.e., our lowest
dimensional data). We found that the models included in the trait layer
did not perform significantly different from each other. The perfor-
mance of the models (including GBM and RF which automatically
consider possible interactions) were almost identical out to three dec-
imal points: ranging from an average RMSE of 0.384 (95% CI [0.383,
0.385]) and an average R2 of 0.063 (95% CI [0.061; 0.064]) to an
average RMSE of 0.384 (95% CI [0.383, 0.385]) and an average R2 of
0.068 (95% CI [0.066, 0.070]). Fig. 1 provides an overview of the trait
models' out-of-sample performance.

Overall, our simplest (and conventional) linear trait-based model
OLS_t (RMSE=0.384, 95% CI [0.383; 0.385]; R2= 0.066, 95% CI
[0.065, 0.068]) predicted leadership performance equally as well as the
more complex regularized models LASSO_t (RMSE=0.384, 95% CI
[0.383; 0.384]; R2= 0.066, 95% CI [0.065, 0.068]) and RIDGE_t
(RMSE=0.384, 95% CI [0.383; 0.385]; R2= 0.068, 95% CI [0.066,
0.070]) as well as the algorithmic models RF_t (RMSE=0.384, 95% CI
[0.383; 0.385]; R2= 0.066, 95% CI [0.064, 0.068]) and GBM_t
(RMSE=0.384, 95% CI [0.383; 0.384]; R2= 0.063, 95% CI [0.061,
0.064]). These more complex models are, however, harder to interpret
(particularly the algorithmic alternatives) because they do not provide
meaningful and clear parameters that explain the relationship between
HPI factors and leader effectiveness. Considering this decreased trans-
parency without improvements in model performance, the simple OLS
alternative is arguably the better option in the low-dimensional context
of trait direct effects.

A reason for the lack of added value is that our data – which re-
presents a typical dataset found in psychological research – may simply
not be the best sort of fuel for the modern ML engine (i.e., the di-
mensionality is too low). Though, by psychological standards, we have
a sufficient number of variables and our sample size is fairly large, the
strength of the ML engine is that it runs optimally on larger data vo-
lumes and a greater number of dimensions (Shmueli, 2010). Indeed, a
recent publication demonstrated this ML complexity advantage (Joel
et al., 2017), but what is not yet well-established empirically is to what
degree more complex ML methods actually help with developing the
domain of leadership science relative to more traditional alternatives.
Does adding context and multiple interactions, as a way to increase

Fig. 1. Trait layer: Out-of-sample model performance for predicting the overall 360-degree effectiveness score. Dots represent the model performance in the 1000 test
samples. The squares and error bars represent the average model performance and 95% confidence intervals. Models are sorted based on their average performance.
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dimensionality, improve our understanding of the leader trait paradigm
(e.g., the trait activation hypothesis; Tett & Burnett, 2003), and when
model complexity is increased, will newer ML methods then outperform
conventional methods?

Trait and context layer

Thus, in the trait and context layer, we introduced more complexity
(i.e., dimensionality) to our analysis by (a) allowing HPI factor inter-
actions, (b) accounting for direct context effects, and (c) exploring
factor-context interactions using the abovementioned contextual and
demographic variables: sector (private and public), job level (strategic
leaders and operational leaders), company size (small, medium, and
large), and gender (female, male, and unknown). We then compared
the predictive performance of the conventional OLS models versus the
regularized and algorithmic newcomers (e.g., RIDGE and RF). Our re-
sults demonstrated a number of important outcomes.

First, and most important, adding context information significantly
improved our ability to predict leadership effectiveness. In fact, the OLS
model that included simple linear effects (not interactions) of trait and
context variables performed among the best (i.e., OLS_tc;
RMSE=0.379, 95% CI [0.378; 0.380]; R2= 0.090, 95% CI [0.088;
0.092]). Other methods and models that performed equally well in-
cluded the regularized RIDGE model incorporating trait and context
interactions (i.e., RIDGE_t*c; RMSE=0.380, 95% CI [0.379; 0.381];
R2= 0.091, 95% CI= [0.089; 0.092]), the regularized RIDGE model
with direct linear trait and context effects (i.e., RIDGE_tc;
RMSE=0.379, 95% CI [0.378; 0.380]; R2= 0.091, 95% CI= [0.089;
0.092]), the regularized LASSO model also with direct linear trait and
context effects (i.e., LASSO_tc; RMSE=0.379, 95% CI= [0.378,
0.380]; R2= 0.088, 95% CI= [0.086, 0.090]), and the algorithmic RF
model with (potentially complex) trait and context (interaction) effects
(i.e., RF_t**c; RMSE=0.379, 95% CI= [0.378, 0.380]; R2= 0.089,
95% CI= [0.087, 0.091]).

Fig. 2 provides an overview of the trait and context models' out-of-
sample performance (top rows) compared to the direct effect trait layer
analysis (bottom rows). Comparing the two layers, we see approxi-
mately a 35% improvement in explained out-of-sample variance due to
the addition of contextual information (e.g., a 36.4% increase from a
mean OLS_t R2= 0.066 to a mean OLS_tc R2= 0.090). Thus, including
information about the context in which these leaders operate helped
explain their performance.

Second, though direct effects of context improved predictive per-
formance, adding interactions between HPI factor traits and context
produced no additional predictive validity. For instance, the GBM and
RF models did not outperform simple models based on linear direct
effects of traits and context despite their freedom to account for any
relationships explaining variance. Thus, given the loss of transparency
associated with the more complex ML newcomers, the conventional
(direct effects) OLS model incorporating traits and context is arguably a
better alternative for balancing interpretability with predictive perfor-
mance. Hence, the added value of our ML approach to the leader trait
paradigm does not necessarily need to lie in the improved ability to
predict leadership effectiveness through complexity. Rather, we thor-
oughly explored all possible complex relationships (to a degree beyond
existing research) and concluded that in low-dimensional settings it is
best to stick to simple linear models of traits and context.

In the next section, we briefly touch on the explanatory insights
gleaned from our more transparent predictive models. Following that,
we raise the dimensionality of our data to demonstrate how the tradeoff
between interpretability and predictive performance shifts in favor of
less transparent ML modeling of the leader trait paradigm.

Explanatory insights from the trait and context layer

To connect our predictive modeling with future explanatory

research of the leader trait paradigm, we chose to average the coeffi-
cients for the 1000 iterations of our OLS trait and context direct effects
models (i.e., OLS_tc). This was a logical choice given that the predictive
performance of this relatively simple model was equivalent to the best-
performing regularized and algorithmic alternatives while at the same
time delivering the most interpretable outcomes. The following sig-
nificant predictors of leader effectiveness emerged over the many
iterations: (a) HPI ambition which corresponds to FFM extraversion
(b=0.048, se=0.015, p= .001), (b) HPI interpersonal sensitivity
which corresponds to FFM agreeableness (b=0.036, se=0.016,
p= .023), (c) HPI prudence which corresponds to FFM conscientious-
ness (b=0.038, se=0.014, p= .007), (d) organizational size, where
medium and large size had a positive effect on leader effectiveness
(respectively, b=0.037, se=0.017, p= .031 and b=0.068,
se=0.017, p < .001), and (e) gender, where being male had a nega-
tive effect on leader effectiveness (b=−0.064, se=0.015, p < .001).

Also, regarding interpretability, as the methods increased in com-
plexity (i.e., RIDGE, LASSO, GBM, and RF), it became increasingly
difficult to extract meaningful averaged coefficients. We were able to
retrieve coefficients for RIDGE and LASSO, but they varied greatly
across the samples as these regularized methods worked towards their
predictive goal. Further, GBM and RF were even less interpretable given
their freedom to explore a variety of (potentially complex) effects over
the 1000 iterations. Thus, this additional output is in no way definitive.
It is simply a tangible suggestion for integrating predictive ML concepts
into the (explanatory) leader trait literature. The fundamental take-
away is that conventional models incorporating simple direct effects of
traits and contexts (not interactions) predicted leadership performance
equally as well as much more complex alternatives while providing
interpretable insights worthy of future explanatory research.

We can make this “keep it simple” claim because our data was of
low dimensionality and newer ML methods are designed to handle
highly dimensional datasets (i.e., the engine was not able demonstrate
its full potential). As mentioned, the regularized linear methods can
either shrink non-important parameters (RIDGE) or set them to zero
(LASSO), and the algorithmic alternatives such as RF can capture
complex nonlinear signals in the data. Utilizing these capabilities to
predict leader effectiveness provides a significant advantage over more
conventional (OLS) approaches when the appropriate, high-dimen-
sional fuel is available (Breiman, 2001).

Predicting leadership effectiveness with high-dimensional data

To increase dimensionality and explore settings where the value of
novel ML emerges, we investigated predictive performance in the trait
and context layers using HPI items rather than factors. Utilizing various
item and context models (some with over 1600 predictors) created the
conditions for extracting more from the ML engine and allowed us to
significantly improve our sense of externally valid parameters. The
average external predictive validity (including confidence intervals) of
the HPI item models in their test samples are demonstrated in Fig. 3.

This figure indeed gives a better sense of the true predictive validity
of each method, for each set of predictors. For instance, comparing
Figs. 2 with 3 suggests that the top-performing HPI item models out-
performed the top-performing HPI factor models. Going further, when
data dimensionality increased due to replacing HPI factors with HPI
items, the regularized and algorithmic newcomers immediately started
to outperform OLS. We observed that even with the simplest HPI item
models incorporating only the direct effects of each item (i.e., 41 pre-
dictors), RIDGE and LASSO outperformed OLS because they were cap-
able of ignoring variables that were less predictive (i.e., regularization
by shrinking non-important parameters or setting them to zero). Ad-
ditionally, when taking items and context into consideration (thus
further increasing dimensionality), RIDGE, LASSO, and RF were able to
focus on the most important predictors among the wide range of 47
predictors (i.e., HPI items and context), and hence we observed an
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increase in their predictive performance when transitioning our ana-
lysis from HPI factors and context to the HPI items and context. Con-
versely, OLS suffered moving from the 13 HPI factors and context
predictors (e.g., OLS_tc; RMSE=0.379, 95% CI [0.378; 0.380];
R2= 0.090, 95% CI [0.088; 0.092]) to the 47 HPI items and context
predictors (e.g., OLS_i_tc; RMSE=0.384, 95% CI [0.384; 0.385];
R2= 0.085, 95% CI [0.083; 0.087]). Thus, as expected, once di-
mensionality was increased, the novel ML engine started to outperform
OLS.

Interestingly, making the range of predictors much larger by adding
interactions to the models worsened overall predictive performance. In
general, almost none of our highly-dimensional data models performed
better. For instance, when using data with the highest dimensionality
(i.e., all 41*40 HPI item interactions plus 41 direct effects totaling 1681
predictors), the OLS engine entirely exploded across all 1000 iterations
(i.e., RMSE=84.403, 95% CI [58.550, 110.256]; R2= 0.006, 95% CI
[0.005, 0.006]). Likewise, RIDGE and LASSO struggled under these
high-dimension conditions (see Fig. 3). However, the exception to this
decreased predictive performance was RF which rose to the top when it
was set loose on all potentially complex HPI item and context effects.
Though, it is important to keep in mind that RF is inherently one of the
worst performing alternatives when it comes to interpretability.

In light of the differences in predictive performance between HPI
factors and HPI items, our results underline that there are indeed si-
tuations in which more complex methods outperform conventional
OLS. This consequently supports the idea that the data needs to match
the method (i.e., the fuel needs to match the engine).

Discussion

The main purpose of our study was to investigate the leader trait
paradigm and the added value of newer ML methods for predicting

leader effectiveness versus conventional regression methods commonly
utilized in leadership research (i.e., OLS). In particular, we examined
the suggestion that interactions and nonlinear relationships among
traits and context affect leadership outcomes. Through a variety of ML
methods, we provided evidence that complex relationships are not
adding much in terms of predictive performance in the current dataset.

However, though complexity in terms of interactions and nonlinear
relationships did not add much, introducing complexity through in-
creased dimensionality and then pairing it with the appropriate ML
engine did. OLS was among the best-performing methods for predicting
leader performance when the data had low-dimensionality, then the
regularized regression methods RIDGE and LASSO emerged as data
dimensionality increased, and finally the algorithmic RF alternative
was best when the data was of the highest dimensionality. Key to this
added ML value was having a variety of methods, models, and data to
explore both interpretability and predictive performance.

Specifically, across our various fuel and engine setups, we observed
that low-dimensional data paired with OLS provided us with the most
straightforward and interpretable results and that high-dimensional
data paired with the newer ML methods allowed us to extract more
predictive value. Subsequently, by combining these various (simple to
complex) methods and models, we found that (a) personality traits
predicted leader effectiveness, (b) adding context improved our ability
to predict effectiveness, (c) ML methods supported a direct effects ap-
proach to the leader trait paradigm (rather than an interactionist per-
spective), and (d) using various analytical methods (with the appro-
priate data) balanced interpretability with predictive performance.

These results have important theoretical implications regarding the
mechanisms driving leader emergence versus leader effectiveness.
Existing research supports a contingency model of leader emergence in
which personal characteristics do have an interaction effect with con-
text on leadership outcomes (e.g., younger leaders are voted for more

Fig. 2. Trait and context layer: Out-of-sample trait and context model performance (upper rows) for predicting the overall 360-degree effectiveness score compared
to trait model performance in Fig. 1 (bottom rows). Dots represent the model performance in the 1000 test samples. The squares and error bars represent the average
model performance and 95% confidence intervals. Models are sorted based on their average performance.
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often during times of change and older leaders for maintaining stability;
Sharpanskykh & Spisak, 2011; Spisak, Grabo, Arvey, & van Vugt, 2014).
However, our leader effectiveness findings tell a slightly different story.
Specifically, models that included interactions did not improve our
ability to predict effectiveness, but adding the direct effects of context
did.

This predictive boost from context implies that leaders should
choose their situations wisely when it comes to leading effectively.
Many leaders, no matter how charismatic, transformative, extraverted,
or generally adept at emergence, will struggle with effectiveness in
difficult situations. Recall from our results that organizational size
significantly influenced effectiveness ratings. This contextual emphasis
derived from our intensive analysis consequently supports existing
work on the “illusion of leadership” (Weber, Camerer, Rottenstreich, &
Knez, 2001) and the “leader attribution error” (Hackman & Wageman,
2007) where the situation is a significant driver of effectiveness, but
followers tend to mistakenly assign the majority of success or failure to
the leader.

Such theoretical insights have significant applied implications.
Shareholders, for example, may unnecessarily pay excessive amounts of
money to CEOs thinking these leaders are the primary reason for in-
creasing share value when deeper market forces are at play (Kolev,
2008). Likewise, in the political arena, a candidate many indeed “look
the part” and emerge as the victor (Antonakis & Dalgas, 2009; Todorov,
Mandisodza, Goren, & Hall, 2005), but if society does not have effective
norms and prosocial policy in place, then leaders will remain largely
ineffective at creating or maintaining positive outcomes. “Green lea-
ders”, for instance, may contingently emerge to promote environmental
sustainability (Spisak et al., 2014), but if the followers are not willing to
adopt sustainable alternatives due to economic or ideological reasons,
then green transitions will remain relatively slow (until the context
demands change). Thus, our data supports the idea that deferring to a

leader (as a person) for positive outcomes – rather than considering
leadership as a process consisting of leaders, followers, and the situa-
tion – blurs an already murky understanding of effectiveness. Future ML
research will need to replicate (and expand on) the current findings to
better understand how leader emergence differs from leadership effec-
tiveness.

In order to apply more complex ML approaches to such research,
where scholars will continue to shift their focus away from direct main
effects of separate traits towards the exploration of nonlinear and in-
teraction effects between traits and context (Jensen & Patel, 2011; King
et al., 2005), we will need to address fundamental limitations regarding
the nature of our datasets (present offering included). Relative to what
complex ML algorithms require, our fuel is frequently suboptimal (e.g.,
samples are too small, the number of variables are too few, scale re-
liability is too low, and/or excessive missing data). Though we worked
to overcome these limitations through various computationally in-
tensive techniques, future research will need to address this by gath-
ering more applicable data if ML is to play an increasing role in lea-
dership discovery.

Scholars can collect this leadership data through, for example, text
mining, video recordings, and network analysis. Each of these techni-
ques would result in highly dimensional data which could not be easily
analyzed with conventional (OLS) methods without aggregating the
data to a level where much of the underlying complexity is lost. Instead,
the modern ML methods we propose here can extract insights from the
data in its rawest form. Researchers can use text mining of conversa-
tions between leaders and followers to examine sentiment during in-
teractions. We can also monitor the location of leaders and followers to
see whether continuous co-location, frequent informal meetings, or any
other geospatial patterns relate to effectiveness. In short, combining
highly dimensional leadership data with ML unlocks vast opportunity
for discovery. We suspect these advancements will fundamentally

Fig. 3. HPI items and context layer: Out-of-sample HPI items and context model performance for predicting the overall 360-degree effectiveness score. Dots represent
the model performance in the 1000 test samples. The squares and error bars represent the average model performance and 95% confidence intervals. Models are
sorted based on their average performance.
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change how leadership research is conducted.
Perhaps a first step in this new direction is the curation of a special

issue where multiple teams take different ML approaches to in-
vestigating the same dataset(s). This “different papers, same dataset”
concept was used to set the benchmark for comparing multilevel
methods in leadership (i.e., Bliese, Halverson, & Schriesheim, 2002),
and it can potentially do the same for raising and addressing questions
pertaining to ML. Scholars and practitioners, for example, will need to
ask themselves if they have the right kind of data and if explanation or
prediction is the primary concern. They will also need to consider ad-
ditional variables such as transformational leadership, leader-member
exchange, and IQ to further refine the fuel. Then, to fully integrate ML
into the broader leadership community, they will also need to consider
using methods such as structural equation modeling to confirm the
causal order behind these predictive insights. Indeed, we can ramp up
data volumes and add dimensionality to increase predictive perfor-
mance, but how does that affect the relevance for leadership scholars
and practitioners if we sacrifice too much interpretability?

Fortunately, for those interested in addressing these questions and
integrating ML into their own leadership research, a repository of lit-
erature exists to guide them on their way. Among the number of ex-
cellent works we have cited, we particularly recommend Friedman
et al. (2001), James et al. (2013), as well as Kuhn and Johnson (2013)
for a broad introduction. Likewise, there is a small, but growing number
of publications focused particularly on ML in Management and Psy-
chological Sciences. We have already cited the contributions of Joel
et al. (2017) as well as Yarkoni and Westfall (2017). In addition, readers
may find the work of Putka, Beatty, and Reeder (2018) helpful for
gaining a deeper understanding of prediction methods.

Finally, we encourage all scholars to acquire some level of appre-
ciation for this extremely important analytical future. With the right
fuel, ML will drive new theory by uncovering hidden complexities (or
confirming established simplicity), it will elucidate blind spots between
theory and reality, and even lead to new measures for explanatory
modeling with smaller samples. However, as research inevitably in-
corporates ML advancement, we must also become increasingly aware
of the pitfalls of this burgeoning approach. Inadvertently using the
wrong fuel in the ML engine has the potential to damage both the en-
gine and the operator.
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